纯五度的两个音,较高者的频率:较低者的频率=3∶2=3/2。由于频率与长度成反比,建立比例式时只要高低音在前后项的位置颠倒过来,所得的比例数就完全相同,所以古代所用的比例数在近代仍然是有效的,只是对于数字所代表的两音的高低作了相反的解释罢了。经过重新解释以后,同样这些数字就成为频率比了。进入现代,又转向微观的思考,从频率转到周期。例如振动频率为每秒钟440次,则振动周期为每次1/440秒,这也就是时间中的波长。从周期的长度来看比例关系,就重新回到低者较长而高者较短的对应关系,与古代所用的长度比完全吻合了。这样,上述那些比数就又可以作为周期比来用了。
无论用长度比、频率比还是周期比,都有其不便之处:在比较两个近似音程的大小时,必须通过乘法或除法,不经过一番计算就不能了解何者较大,大多少,而两音程相加减,则又必须作乘除运算。一个音程扩大到多少倍、划分成多少等分,则要作乘方、开方运算。随着数学的发展,19世纪开始将对数概念引进音程的计量,建立了“音程值”概念。计算音程值的方法,是把某音程的频率比值换算成对数,并依一定意图制定某种单位名称。有了音程值以后,音程的大小就可一目了然,音程加减可用音程值加减来算,音程扩大到多少倍或划分成多少等分也可用简单的乘除法来算。各国现多以“音分”为音程值的单位,此为英国数学家兼比较音乐学家、语言学家A.J.埃利斯(1814~1890)所创用。八度的音程值为1200音分,每个平均律半音为100音分。任何律制中的任何音程的音分数都可根据频率比通过常用对数算得:先求出比例常数,再把各音程频率比的常用对数乘以比例常数,即得。比例常数是:八度的音分数÷八度频率比值2的常用对数=1200÷0.30103=3986.313。如欲求纯五度的音分数,就把纯五度频率比值(3∶2=1.5)的对数(0.17609)乘以比例常数:0.17609×3986.313