等见到菲奖大佬的喜悦终于消失了,他们忽然想到了一个恐怖的问题,今年是菲奖大佬坐镇,CMO的题目不会也是菲奖大佬出吧?
想到这,他们不由的哆嗦了一下,菲奖大佬出题,这种难度我们能扛得住吗?
想想就哆嗦啊。
按理说,每个出题人都会从自己擅长的领域出,丘成桐教授最擅长的领域是什么来着,偏微分方程,拓扑学,代数几何……
开幕式结束后,他们纷纷回去开始回顾拓扑学,代数几何方面的经典题型,希望临时抱抱佛脚,如果他们早就知道这次是这位大佬坐镇,必定苦心研究啊!
可根本没有给他们多少时间,第二天CMO准时开始。
CMO是仿照IMO进行考试,但是分值却是IMO的三倍,也就说总分是126分,每天三道题,总共六道题,每天考试时间四个半小时。
第一个题目就是几何题,要求证明三点共线。
两个圆中各有一个正方形,这两个圆和正方形交叠一部分,看起来并不复杂,但是点共线的问题从来都不简单,因为涉及的概念很多,覆盖面很广,综合性也很强。
老师也会集中讲解这部分,欧拉线,牛顿线,西姆松线,戴沙格定理,奥贝尔定理等等,主要难点在于怎么准确的找到自己所需要的定理,这样才能让问题迎刃而解。
洛叶想了想,决定先从角的方面考虑,先证明中间一点为了顶点,两侧两点所在的射线所成的角为了平角,再证明整着中间一点为顶点再做一条直线……
确定了思路洛叶就开始下笔了,这种题除却了各种定理和辅助线,可以归结的也就两方面,一个是角,一个线,总归也就这两种证明方法。
洛叶聚精会神的做,她和其他人都没有分在同一个考场——在确定了不和她一个考场后,杜周等人纷纷长舒了一口气,逃过一劫的表情,之后对和洛叶同一个考场的纷纷表示了精神上的同情。
希望他们能在两天