虽然学术界没有明文规定,但科研项目的经费往往和难度是挂钩的。
经费越高,难度越高。
反之亦然。
蒙日-安培方程的光滑性论证,毫无疑问属于非常重要而高端的研究,其难度从其研究史上就很明确了。
蒙日-安培方程,起源于两百多年前蒙日提出的最优传输问题,后来蒙日和安培两个法国数学家一起开始了这一理论方向。
在上个世纪八十年代,布雷尼尔将最优传输和蒙日-安培方程的关系进一步阐发。
他的学生维拉尼将最优传输理论应用于微分几何和统计物理,依靠对非线性朗道阻尼的证明,以及对玻尔兹曼方程收敛至平衡态的研究获得了菲尔兹奖。
维拉尼的学生阿莱西奥-菲加利研究最优传输映射的正则性理论以及和蒙日-安培方程的内在联系,凭借蒙日-安培方程解的二阶导数W21的先验估计,以及对几何不等式的应用,也获得菲尔兹奖。
换句话说,蒙日-安培方程的相关研究,已经牵扯到了两个菲尔兹得主,由此可见,其研究难度和重要性了。
蒙日-安培方程的应用非常广泛,伴随着计算机技术的不断发展,未来应用只会更加的广泛。
从最有传输问题到医学成像、无线通讯、汽车工业、深度学习,等等。
现代科技到处都充斥着蒙日一安培方程的影子。
蒙日一安培方程由于其完全非线性的特性,使得其求解一直是一個非常困难的问题。
这也是大部分学者研究蒙日一安培方程的方向--为了使其求解容易一些,就必须要研究其存在性、唯一性和光滑性(正则性)。
非线性偏微分方程,高深的研究论文都是三大性质问题。
蒙日-安培方程的光滑性论证,肯定能够上杰青以上项目的档次。
“其实,不只是因为难度。”
罗勇军被张硕看破了项目的问题,干脆也就破罐破摔,他打开一份论文资料,郁闷道,“