,平行世界中的能量场也开始逐渐消散。
回到现实世界后,周瑾立即将药物和实验设备带回实验室。她利用这些药物成功地抑制了那些变异的生物细胞,并将它们一一摧毁。这场生物改造的灾难终于得到了圆满的解决。
然而,这场经历让周瑾深刻地认识到了基因编辑技术的潜在风险。她意识到,在追求科技进步的同时,必须时刻警惕和防范可能出现的风险和危机。
在成功摧毁异界能量核后,周瑾并没有停下脚步。她深知,这次事件只是揭开了基因编辑技术潜在风险的一角,更多未知的挑战还在前方等待着她。
为了彻底了解这次生物改造灾难的根源,并防止类似事件再次发生,周瑾决定深入调查并寻找更全面的解决方案。
首先,周瑾开始回顾整个实验过程,试图找出基因编辑技术中可能存在的漏洞和隐患。她仔细检查了实验设备、操作过程以及基因编辑的目标序列,发现了一些之前被忽视的细节。这些细节可能是导致基因编辑失控的关键因素。
经过深入的分析和研究,周瑾发现基因编辑技术的一个致命弱点:它过于依赖对目标基因的精确识别和操作。
然而,在复杂的生物系统中,基因之间的相互作用和调控关系极为复杂,稍有不慎就可能引发连锁反应,导致不可预知的后果。
为了解决这个问题,周瑾决定探索一种全新的基因编辑方法——基于系统生物学的基因编辑技术。这种方法不仅关注单一基因的改变,还考虑整个生物系统的稳定性和平衡性。
通过深入研究生物系统的内在机制,周瑾希望能够找到一种更加安全可控的基因编辑方式。
在接下来的日子里,周瑾投入了大量的时间和精力研究系统生物学和基因编辑技术。她阅读了大量的文献和资料,与同行进行了广泛的交流和讨论。
她利用现代生物信息学和计算生物学的方法,对生物系统进行了全面的模拟和分析。
经过数月的努力,周瑾终于取得了突破